Cation-pi interactions: structures and energetics of complexation of Na+ and K+ with the aromatic amino acids, phenylalanine, tyrosine, and tryptophan.
نویسندگان
چکیده
Threshold collision-induced dissociation of M(+)(AAA) with Xe is studied using guided ion beam tandem mass spectrometry. M(+) include the alkali metal ions Na(+) and K(+). The three aromatic amino acids are examined, AAA = phenylalanine, tyrosine, or tryptophan. In all cases, endothermic loss of the intact aromatic amino acid is the dominant reaction pathway. The threshold regions of the cross sections are interpreted to extract 0 and 298 K bond dissociation energies for the M(+)-AAA complexes after accounting for the effects of multiple ion-neutral collisions, internal energy of the reactant ions, and dissociation lifetimes. Density functional theory calculations at the B3LYP/6-31G level of theory are used to determine the structures of the neutral aromatic amino acids and their complexes to Na(+) and K(+) and to provide molecular constants required for the thermochemical analysis of the experimental data. Theoretical bond dissociation energies are determined from single-point energy calculations at the B3LYP/6-311++G(3df,3pd) level using the B3LYP/6-31G geometries. Good agreement between theory and experiment is found for all systems. The present results are compared to earlier studies of these systems performed via kinetic and equilibrium methods. The present results are also compared to the analogous Na(+) and K(+) complexes to glycine, benzene, phenol, and indole to elucidate the relative contributions that each of the functional components of these aromatic amino acids make to the overall binding in these complexes.
منابع مشابه
Synthetic receptors as models for alkali metal cation-pi binding sites in proteins.
The alkali metal cations Na(+) and K(+) have several important physiological roles, including modulating enzyme activity. Recent work has suggested that alkali metal cations may be coordinated by pi systems, such as the aromatic amino acid side chains. The ability of K(+) to interact with an aromatic ring has been assessed by preparing a family of synthetic receptors that incorporate the aromat...
متن کاملAromatic Amino Acids-Guanidinium Complexes through Cation-π Interactions.
Continuing with our interest in the guanidinium group and the different interactions than can establish, we have carried out a theoretical study of the complexes formed by this cation and the aromatic amino acids (phenylalanine, histidine, tryptophan and tyrosine) using DFT methods and PCM-water solvation. Both hydrogen bonds and cation-π interactions have been found upon complexation. These in...
متن کاملCation-pi interactions involving aromatic amino acids.
The cation-pi interaction is a general, strong, noncovalent binding force that is used throughout nature. The side chains of the aromatic amino acids [phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp)] provide a surface of negative electrostatic potential than can bind to a wide range of cations through a predominantly electrostatic interaction. In this brief overview, the fundamental n...
متن کاملOn the interaction between the imidazolium cation and aromatic amino acids. A computational study.
Complexes formed by the imidazolium cation and the aromatic amino acids, phenylalanine, tyrosine, tryptophan, and histidine have been studied by using computational methods. Complexation energies estimated at the MP2.X level amount to -123.3, -124.6, -131.5 and -145.5 kJ mol(-1) for Phe, Tyr, Trp and His, respectively. The results obtained for Phe, Tyr and Trp complexes are similar, with the mo...
متن کاملCatalytic Effects of Carbon Nanotubes on Complexation of Some Amino Acids via Cobalt Cation Catalyst
In this research, investigation of the adsorption isotherms and the effect of solution conditions such as pH and concentration of complexation of some amino acids with cobalt(II) nitrate six-hydrate upon multi-wall type carbon nanotube (CNT) were done. The adsorption capacity of complexation of amino acids onto the surface of carbon nanotube increased with the pH from acidic to alkaline. At pH ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 126 44 شماره
صفحات -
تاریخ انتشار 2004